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ABSTRACT 

This thesis is a two-part study that analyzed a compressed air storage system 

using fundamental thermodynamic principles and designed the compression phase using 

commercial-off-the-shelf components. The analysis for this system used a novel control-

mass methodology that allowed both isentropic and isothermal work and heat transfer 

processes to be calculated using end states. The resulting formulas provide a rigorously 

derived yet straightforward benchmark for the upper limits of efficiency in such systems. 

The design portion of this study lays the groundwork for building the compression 

phase of a solar-powered compressed air energy storage system that will integrate a 

rotary compressor, ultracapacitors, and a turbocharger to serve as proof-of-concept for an 

environmentally friendly energy storage system that can effectively utilize energy 

provided by solar radiation. Once implemented, this system’s practicality has the 

potential to spur the use of solar panels on Department of Defense shore installations 

without the side effect of relying on rare-earth materials for energy storage. 
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I. INTRODUCTION 

This project is sponsored by the Office of Naval Research (ONR) as part of its 

Energy Systems Technology Evaluation Program (ESTEP). Through ESTEP, ONR 

partners with education and research facilities to “conduct real-world advanced 

technology demonstrations to evaluate emerging [clean] energy technologies using Navy 

and Marine Corps facilities as test beds” [1]. The system—a solar-powered small-scale 

compressed air energy storage (SS-CAES) system—is being designed using the multi-

physics approach to energy storage, a “methodology that suggests design alternatives 

based on first principles and consideration of what the end-use of the energy storage will 

be,” [2] and will be implemented at the Integrated Multi-Physics Renewable Energy Lab 

(IMPREL). 

A. MOTIVATION 

Renewable energy resources have been in use commercially for hundreds of 

years, but the focus on and demand for these resources have grown substantially since the 

turn of the century [3]. As Figure 1 indicates, the use of renewable and alternative energy 

sources is expected to nearly double in the next 20 years [4]. This growth is due in large 

part to the detrimental environmental side effects of current energy production methods, 

such as the rise in global average surface temperature [5]. These side effects have already 

driven much of the world’s industrialized nations to implement legislative measures to 

curb the production of CO2 and other greenhouse gases [6]. Although energy companies 

bear the majority of these regulations, the increased attention by the general public 

towards “going green” compels many other companies and organizations nationwide to 

alter their business practices as well [7]. 
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Figure 1.  Projection of U.S. Energy Consumption by Energy Source. 

Adapted from [4]. 

The military is also interested in efficient use of renewable resources, largely 

because of diminishing supply and rising costs of fossil fuels. As Figure 2 shows, the 

U.S. Department of Defense (DOD) energy usage dwarfs that of any other organization 

in the world, and it is therefore very susceptible to increased fuel costs. Fuel cost 

volatility and its impact on the uncertainty in energy security has cast such a large 

shadow over mission readiness that the military has already taken steps to switch its own 

energy usage over to renewable resources. For the Navy, specifically, one of the five 

“Secretary of the Navy Energy Goals” is that, “by 2020, [the Department of the Navy 

(DON)] will produce 50 percent of shore-based energy requirements from alternative 

sources [8]. To promote fulfillment, SECNAV charged each region and installation with 

developing an energy plan [9]. In accordance with this strategy, COMNAVREGSWINST 

4101.lA, the energy management plan for Naval Postgraduate School’s (NPS) host region 

Navy Region Southwest, states that “installations shall develop on base micro-grids of 

renewable power” to replace the existing grid [10]. 
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Figure 2.  FY2010 U.S. DOD Energy Usage Compared against World’s Largest 

Retailer and World’s Largest Delivery Service. Source: [11]. 

B. LITERATURE REVIEW 

Numerous studies have concluded that the growth in the use of renewable energy 

sources brings with it a need for energy storage technologies to smooth out the fluctuations in 

power generation caused by environmental variability [12-14]. In the case of solar panels, 

power production occurs during daylight hours, which typically occurs when residents are 

not drawing a big electrical load because much of the household is not at home. Conversely, 

during nighttime hours, when lights are on and residents are in general using more electricity, 

the solar panels are sitting idle. Thus, without appropriate energy storage methods, excess 

power generation cannot be saved for later use. Compressed air energy storage (CAES) 

plants offer one solution to this obstacle with the ability to convert off-peak reduced-cost grid 

electricity (or any form of renewable energy with an inherently variable output) to stored 

energy in the form of high-pressure air. When electricity demand signal grows, this 

compressed air can be converted back to electricity by an expansion device. More broadly, 

compressed air itself “is used in thousands of applications and is vital to the productivity 

of industries around the globe” [15]. 
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Figure 3 shows that—apart from pumped hydroelectric storage (PHS)—large-

scale CAES offers the best energy storage method for energy management, defined as 

“the ability to shift bulk energy over periods of several hours or more” [13]. The main 

advantage CAES has over PHS is that it is not as severely constrained by geographic 

requirements. Another advantage for CAES was proposed by a recent study by Barnhart 

and Benson [16], which concluded that CAES actually surpasses PHS and is also vastly 

superior to electrochemical batteries as measured by energy stored on invested (ESOI), 

which is “the ratio of electrical energy stored over the lifetime of a storage device to the 

amount of primary embodied energy required to build the device.” This conclusion, 

illustrated in Figure 4, means electrochemical battery cycle life must improve 

considerably before utilities will consider implementing them as a “load-balancing 

solution at global scale” [16]. Table 1 shows the immense size, weight, and cost of 

today’s most advanced batteries when built to store 24 hours of electricity generation in 

the United States (based on data from [17]) [18]. 

 

Figure 3.  Comparison of Power Rating and Rated Energy Capacity with 

Discharge Time Duration at Rated Power. Source: [14]. 
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Figure 4.  Bar Plot Showing ESOI for Load-Balancing Storage Technologies. 

Source: [16]. 

Table 1.   Characteristics for Top Three Electrochemical Battery Technologies. 

Adapted from [18]. 

Battery Size  

(square miles) 

Weight  

(millions of tons) 

Cost 

Sodium Sulfur (NaS) 923 450  $40.77 trillion 

Lithium-ion 345 74  $_11.9 trillion 

Lead acid (advanced) 217.5 15.8  $8.3 trillion 

These characteristics apply when building each battery to store 24 hours of U.S. energy 

production. 

 

As Figure 5 shows, CAES cycle efficiency is not as high as that of PHS, but, as 

previously mentioned, geographic constraints have stalled PHS plant construction. 

Furthermore, the data in Figure 6 show that current power plants only operate at 33% 

efficiency, which means that CAES plants are actually more efficient than their fossil-

fuel or nuclear counterparts. However, even though PV costs have dropped significantly 

in recent years, cycle efficiency continues to be the focus of many research papers. 

Grazzini and Milazzo [19, 20] performed a thermodynamic and exergy analysis of a 

theoretical CAES plant which uses thermal energy storage (TES) to lower compressor 

exit temperature (also known as advanced adiabatic CAES, or AA-CAES) and proposed 
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that cycle efficiency could be improved enough to make CAES competitive with other 

energy storage systems. Studies performed by the Arizona Research Institute for Solar 

Energy (AzRISE) [21] and Mason et al. [22] also found that TES would be needed to 

make solar-powered CAES cost effective against natural gas plants in regards to shaving 

peak costs during electric grid operations. However, these same studies stated that the 

timeline to utility scale implementation would be significantly affected by the dichotomy 

between natural gas prices and climate change concerns [21, 22]. In an effort to 

standardize research methods for future AA-CAES projects, various thermodynamic 

models of both large and small scale AA-CAES systems have been developed [23-25]. 

 

Figure 5.  Comparison of Cycle Efficiencies for Various Energy Storage Systems. 

Adapted from [14]. 
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Figure 6.  U.S. Energy Sources and Consumption Sectors in 2015. 

Adapted from [26]. 

1. Utility Scale Plants 

Interest in CAES systems began in the late 1940s [27], but did not grow 

substantially until the 1970s as the cost of oil and gas increased significantly [28]. The 

first utility scale CAES system, a 290 MW plant near Huntorf, Germany, has been 

operating since 1978 and is currently being utilized to level the variable electricity 

generation of multiple wind turbines across Germany [29]. Following that, a 110 MW 

plant near McIntosh, Alabama, was started up in 1991 and is used primarily for load 

management and peak power generation [29]. Both plants use large underground caverns 

to store the compressed air and heat the compressed air with natural gas just prior to the 

power-producing expansion phase. Of note, these two plants come in second only to PHS 

in terms of providing worldwide grid-scale energy storage [30]. 

Up until just a few years ago, the growth in research and development for the 

CAES concept has been held stagnant by geographic constraints as well as economical 

oil and natural gas prices. A handful of startup companies have begun making CAES 

plants fossil-fuel free by using renewable energy to compress the air and have been 
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testing designs that would make the compression and storage phases more efficient. In 

2013, Apex Compressed Air Energy Storage announced plans to collaborate with 

Dresser-Rand to build a 317-MW plant in salt caverns near Dallas, Texas. Dresser-Rand, 

the same company who had built equipment for the Alabama CAES plant, was planning 

to use its newly developed “integrated energy storage technology, called SMARTCAES” 

in the Texas plant [31]. However, as of late 2014, these plans had been placed on hold 

indefinitely [32]. 

Also in 2013, SustainX built a 1.5-MW demonstration plant that attempted to both 

improve thermal efficiency by spraying water into the air to achieve near-isothermal 

compression and remove the geographic constraint by storing the air-water mix in above-

ground pipes, similar to those used by the natural gas industry [33]. This above-ground 

approach failed to meet expectations, and in 2015, SustainX merged with General 

Compression, a company with a 2-MW plant in Texas that uses salt caverns to store air 

compressed by a wind turbine [34]. 

LightSail Energy (LSE) is also attempting to revolutionize the above-ground 

approach to CAES. As with SustainX’s original approach, LSE is injecting a water mist 

into the compression chamber to improve thermal efficiency, as shown in Figure 7 [35]. 

To lower the costs of the storage system, it is developing carbon-fiber tanks [36]. As of 

2015, LSE is working on two field projects: one in Canada will store energy produced 

from a wind turbine, and the other at Naval Base Ventura County in California will store 

energy produced from photovoltaic (PV) panels [36, 37]. 

 

Figure 7.  Overview of LightSail Energy’s Compressed Air Energy Storage 

System. Adapted from [35]. 
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In a slightly different approach, a company based in England called Isentropic 

stores the heat generated from compression of air in a layered bed of crushed gravel [38]. 

This new thermal storage concept and the reciprocating heat pumps that were built for 

this energy storage system are collectively termed Pumped Heat Energy Storage (PHES) 

[38]. A screenshot of a video showing the compression phase of this storage system is 

shown in Figure 8. By using highly efficient heat pumps and a set of control valves to 

ensure only a relatively small volume of crushed gravel is being actively cooled/heated, 

the company claims PHES will reach an efficiency on par with pumped hydro-electric 

energy storage [38]. 

 

Figure 8.  Screenshot of Isentropic Company Video Showing Compression Phase 

of PHES System. Source: [39]. 

2. Medium- and Small-Scale Research 

The geographic constraints imposed on the underground approach to large scale 

CAES has caused engineers and economists to also analyze various forms of medium- 

and small-scale CAES systems. Petrov et al. [40] proposed a distributed network of 

CAES systems that would be more environmentally friendly than current battery 

technology and, under the appropriate control strategy, could either work with the grid or 

be isolated to individual residences. Kim et al. [41, 42] developed a patent for a system 

that combines CAES with PHS by utilizing two tanks. As shown in Figure 9, one tank is 
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for air storage and the other is for hydraulic energy storage to maintain the compressed 

air at constant pressure to avoid the efficiency losses inherent in pressure regulation. 

 

Figure 9.  Operation of Constant-Pressure CAES System Combined with 

Hydraulic Energy Storage. Source: [41]. 

In terms of backup power, CAES can be combined with other energy storage 

technologies such as flywheels or supercapacitors to produce an Uninterruptible Power 

Supply system that offers both an excellent response time and extended runtime [43, 44]. 

For remote areas, Ibrahim et al. [45] have proposed a hybrid system that supplements 

power supplied by a diesel generator with air compressed by a wind turbine powered 

compressor.  

Regarding stand-alone CAES systems, a team from the University of Kansas 

developed a CAES system prototype powered by a shrouded wind turbine to demonstrate 

the concept that these systems could be scaled down to help power individual residences 

[46]. Paloheimo and Omidiora [47] analyzed the feasibility of using CAES and micro 

turbines to power personal electronic devices in third world countries. Villela et al. [48] 
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focused their research on the compression stage and developed a “low-power high 

efficiency” compressor prototype that was specifically designed to work with residential-

sized PV panel arrays. Kim et al. [49] and Manfrida et al. [50] proposed that a SS-AA-

CAES system using COTS parts could be made more economical by using the heat 

generated from the compression stage and the cooling that takes place during the 

expansion stage for residential heating and cooling. Keeney [51] scrutinized efficiency 

claims by various industrial companies and collected rudimentary experimental data by 

testing a SS-CAES system using commercial-off-the-shelf (COTS) parts. 

C. PROJECT OBJECTIVES 

This thesis is a two-part study that details the design and analysis of a solar-

powered SS-CAES. The primary objective for implementing a solar-powered 

compression system is to replace an aging compression system used solely to charge a 

supersonic wind tunnel. A secondary objective is to integrate this compression system 

into a bigger study that aims to develop a proof-of-concept SS-CAES system that utilizes 

a small-scale generator for the expansion phase (developed by Mclaughlin [52]). Despite 

the many research papers that discuss CAES system capability and practicality, the 

literature review has shown that building a solar-powered SS-CAES system with COTS 

parts would take the CAES research field a significant step forward. The objective for the 

design portion of this study is to find COTS parts for a compression system that operates 

within the parameters allowed by a micro grid that is presently installed at the IMPREL. 

The analysis for this system uses a novel control-mass methodology that allows 

both isentropic and isothermal work and heat transfer processes to be calculated using 

end states. The objective for this analysis is to provide a rigorously-derived yet 

straightforward benchmark for the upper limits of efficiency in CAES systems. 
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II. THERMODYNAMICS OF CAES MODEL 

Current thermodynamic models for compressed air energy storage systems 

employ the steady-flow-open-system approach, which relies on describing how gas 

properties incrementally change as air pressure builds up in the storage vessel [23, 24, 

53]. This approach, while technically correct, tends to be tedious and time-consuming 

and does not lead to insight into the system operation. 

To describe this energy storage system using the fundamental concepts of the 

First Law of Thermodynamics, a control mass, state-based approach was developed in 

which the compression and expansion processes were both modelled as utilizing a long 

piston-cylinder arrangement such that the mass of air needed to achieve the desired 

system pressure was contained within the initial volume of the storage tank and attached 

cylinder. This approach is conceptually illustrated in Figure 10. 

 

This diagram is not to scale. 

Figure 10.  System Diagram for Control Mass CAES System Approach. 

To preserve the fundamental nature of this system’s analysis, the following 

assumptions were applied: 

 The working fluid, air, behaves as an ideal gas. 
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 Pressure loss in pipe flows and kinetic and potential energy effects of the 

gas flow are negligible. 

 The compression phase begins with, and the expansion phase ends at, 

atmospheric conditions. 

These assumptions allow use of the Ideal Gas Law, simplify use of the First Law of 

Thermodynamics, and allow for a cycle analysis. The system was first analyzed using 

isentropic work processes; an isothermal cycle was then analyzed to form a reference. 

A. ISENTROPIC CYCLE ANALYSIS 

To compute the energy added to and subsequently extracted from the system on a 

per mass basis by the compression and expansion phases using the state-based approach 

for an isentropic cycle, the work and heat transfer processes were separated and analyzed 

independently. Figure 11 shows that this separation produces processes that are 

analogous to the Atkinson air standard cycle. Figure 12 and 13 illustrate the processes 

and the four distinct states: 

 State 1 (dotted-line control mass of Figure 12 and compound-dashed-line 

control mass of Figure 13) describes the air at atmospheric pressure and 

temperature, 𝑝𝑎𝑡𝑚 and 𝑇𝑎𝑡𝑚, respectively, within an initial volume, 𝑉1 

(both before isentropic compression and after constant-pressure 

atmospheric heat absorption). 

 State 2 (dashed-line control mass of Figure 12) describes the air at the 

pressure, 𝑝2, and temperature, 𝑇2, that would be reached after it has been 

isentropically compressed from State 1 to the volume of the storage tank, 

𝑉𝑡𝑎𝑛𝑘, assuming the tank and cylinder had perfect thermal insulation. 

 State 3 (dashed-line control mass of Figures 12 and 13) describes the air at 

the desired high pressure, 𝑝ℎ𝑝, after it has undergone constant-volume 

atmospheric heat loss to 𝑇𝑎𝑡𝑚.  

 State 4 (dotted-line control mass of Figure 13) describes the air at the 

volume, 𝑉4, and temperature, 𝑇4, that would be reached after it has been 

isentropically expanded from 𝑝ℎ𝑝 down to 𝑝𝑎𝑡𝑚, assuming the tank and 

cylinder had perfect thermal insulation. 
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Figure 11.  Temperature-Entropy Diagram for Isentropic CAES System Cycle. 

 

Figure 12.  System Diagram Showing Processes and States for Isentropic 

Compression Phase. 
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Figure 13.  System Diagram Showing Processes and States for Isentropic Expansion 

Phase. 

This system’s thermal efficiency is defined as 

3 4

1 2

Expansion Work Out

Compression Work In

w

w
   (1) 

As shown in Figure 11, 
1 2
w  is assumed to be an isentropic process. This allows 

the relationship between pressure and specific volume to be described as 

1 1 2 2
p p constant     (2) 

where 𝛾 is the ratio of specific heats. Equation (2) in turn allows 
1 2
w  to be calculated as 

 
2

1 2 2 2 1 11

1

(1 )
w pd p p  


  

  (3) 

Figures 11 and 12 show that 𝑝1 = 𝑝𝑎𝑡𝑚 and 𝜈2 = 𝜈𝑡𝑎𝑛𝑘 for 
1 2
w . To determine 𝜈1, 

the Ideal Gas Law was applied to state 1 as 
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1
air atm

atm

R T

p
   (4) 

To determine 𝑝2, the Ideal Gas Law was first applied to state 3 as 

3

hp tank

atm

air

p
T T

R


   (5) 

Substituting the right-hand side of Equation (5) into Equation (4) results in 

1

hp

tank

atm

p

p
   (6) 

With 𝜈1 known, Equation (2) is solved for 𝑝2 as 

1
2 1

2

hp

atm

atm

p
p p p

p







  
       

   

 (7) 

and thus 
1 2
w  becomes 

1 2

1

1

(1 )

1

(1 )

1

(1 )

1
1

(1 )

hp hp

atm tank atm tank

atm atm

hp air atm
atm air atm

atm hp

hpair atm
atm hp

hp atm

hp

air atm

atm

p p
w p p

p p

p R T
p R T

p p

pR T
p p

p p

p
R T

p









 










  
   

     

  
   

     

  
   

     

 
  

   

 
 
 
 

 

(8) 

As with 
1 2
w , Figure 11 shows that 

3 4
w  is also an isentropic process, and is 

calculated as  
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 
4

3 4 4 4 3 33

1

(1 )
w pd p p  


  

  (9) 

where 𝑝3 = 𝑝ℎ𝑝 and 𝜈 = 𝜈𝑡𝑎𝑛𝑘. The pressure at state 4 (the end state of work due to 

expansion) is limited to 𝑝𝑎𝑡𝑚 since the atmosphere would push back on the piston if the 

system pressure dropped below 𝑝𝑎𝑡𝑚. This limitation results in 𝜈4 being less than 𝜈1 and 

therefore must be determined using the isentropic pressure-volume relationship. Thus, 𝜈4 

is calculated as 

1

4

hp

tank

atm

p

p



 
 

  
 
 

 (10) 

and 
3 4
w  becomes  









 








 
  

      
 

 
  

      
 

 
  

      
 

1

3 4

1

1

1

(1 )

1

(1 )

1
1

(1 )

hp

atm tank hp tank

atm

hp air atm air atm
atm hp

atm hp hp

hp

air atm

atm

p
w p p

p

p R T R T
p p

p p p

p
R T

p

 

(11) 

Substituting the right-hand side of Equations (8) and (11) into Equation (1) results in a 

cycle thermal efficiency of 
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1

1

1

1

1
1

(1 )

1
1

(1 )

1

1

hp

air atm

atm

hp

air atm

atm

hp

atm

hp

atm

p
R T

p

p
R T

p

p

p

p

p

























 
  

      
 

 
  
  
      

 
  

   
  
 


  
  
     

 

(12) 

Figure 14 illustrates the relationship between the magnitude of isentropic specific 

compression and expansion work. Figure 15 shows cycle efficiencies for a system 

pressure range of just above atmospheric pressure (where the thermodynamic constraint 

imposed on 
3 4
w  results in a significant loss of efficiency despite the relatively small 

amounts of work) to 13.78 bar (200 psia). For a desired system pressure of 10.34 bar (150 

psia) (the operating pressure for the proposed system), the cycle efficiency is 

approximately 33%, meaning the system could recover 33% of the energy put into it 

when operating isentropically. 
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Figure 14.  Component Isentropic Specific Work Based on System Pressure. 

 

Figure 15.  Cycle Thermal Efficiency Based on System Pressure. 
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Turning to analyze heat transfer, Figure 11 shows that the heat transfer for the 

compression phase is a constant-volume process that cools the air from the high 

temperature produced by the isentropic work process (state 2) down to 𝑇𝑎𝑡𝑚 (state 3). The 

specific heat transfer is thus calculated as 

   2 3 3 2 2v v atm
q c T T c T T     (13) 

𝑇2 can be written in terms of pressure by using the following isentropic pressure-

temperature relationship, applied between states 1 and 2: 

11
1 1

2 2 2 2

atm atm
p Tp T

p T p T



    
        
   

 (14) 

Equation (14) can be rearranged to solve for 𝑇2 as 

1

2

2 atm

atm

p
T T

p







 
   
 

 (15) 

Substituting the right-hand side of Equation (7) for 𝑝2 in Equation (15) results in 

1

2

hp

atm

atm

p
T T

p

 
 

  
 
 

 (16) 

Substituting the right-hand side of Equation (16) for 𝑇2 in Equation (13) results in 

1

2 3

1

1

hp

v atm atm

atm

hp

v atm

atm

p
q c T T

p

p
c T

p









  
    
     

  
    
     

 

(17) 

Unlike the post-compression heat transfer, which occurs as a constant-volume 

process, the post-expansion heat transfer, heat absorption from 𝑉4 to 𝑉1 ,takes place at 

constant pressure. Thus,  
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   4 1 1 4 4p p atm
q c T T c T T     (18) 

As with 𝑇2, 𝑇4 can be written in terms of pressure by using the isentropic 

pressure-temperature relationship, applied between states 3 and 4: 

1 1
3 3

4 4 4

hp atm

atm

pp T T

p T p T

 

     
        
   

 (19) 

Solving Equation (19) for 𝑇4: 

1

4

atm
atm

hp

p
T T

p







 
  
 
 

 (20) 

Substituting the right-hand side of Equation (20) for 𝑇4 in Equation (18) results in 

1

4 1

1

1

atm
p atm atm

hp

hp

p atm

atm

p
q c T T

p

p
c T

p













 
  

     
  
 

 
  

     
  
 

 

(21) 

B. ISOTHERMAL CYCLE ANALYSIS 

Unlike the isentropic cycle, the work and heat transfer processes for the 

isothermal CAES cycle cannot be separated because the heat generated by compression 

and lost by expansion is assumed to be transferred to and from the atmosphere 

instantaneously. Therefore, whereas pressure in the isentropic cycle rises due to changes 

in both system volume and system temperature, heat transfer assumption for the 

isothermal cycle results in system pressure rising due to the change in system volume 

only. Consequently, the isothermal cycle is the most efficient model for a CAES system. 

Figure 16 shows how the isothermal work processes relate to each other 
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thermodynamically. Of note, state 2t in the isothermal cycle is the same as state 3 in the 

isentropic cycle. Figures 17 and 18 illustrate the isothermal compression and expansion 

phases, respectively, and the resultant states: 

 State 1 (dotted-line control mass of Figures 17 and 18) describes the air at 

atmospheric pressure and temperature, 𝑝𝑎𝑡𝑚 and 𝑇𝑎𝑡𝑚, respectively, within 

an initial volume, 𝑉1, both before isothermal compression and after 

isothermal expansion. 

 State 2t (dashed-line control mass of Figures 17 and 18) describes the air 

at 𝑇𝑎𝑡𝑚 and the desired high pressure, 𝑝ℎ𝑝, both after isothermal 

compression and before isothermal expansion. 

 

Figure 16.  Temperature-Entropy Diagram for Isothermal CAES System Cycle 
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Figure 17.  System Diagram Showing Processes and States for Isothermal 

Compression Phase. 

 

Figure 18.  System Diagram Showing Processes and States for Isothermal 

Expansion Phase. 

Figure 16 shows that the pressure at state 2 is 𝑝ℎ𝑝. This is proven by Equation 

(22). 





  
       

   

1
2

hp

t atm atm hp

tank atm

p
p p p p

p
 (22) 
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The isothermal pressure-volume relationship shown in Equation (22) results in isothermal 

compression specific work being calculated as 

2

1 2 1 11
1

ln

ln

t
tank

t

atm
air atm

hp

w pd p

p
R T

p


 


 




 

(23) 

The isothermal expansion specific work process is calculated in much the same 

way, since 𝑝ℎ𝑝𝑣𝑡𝑎𝑛𝑘 = 𝑝1𝑣1. Thus, 

1

2 1 1 1
ln

ln

t

tank

hp

air atm

atm

w p

p
R T

p









 

(24) 

and thus, as expected, 

2 1 1 2t t
w w   (25) 

Using Equation (1) as the definition for isothermal cycle efficiency reveals that 

this cycle is 100% efficient; this is a direct result of the previously discussed 

instantaneous heat transfer assumption. The specific heat transfer to and from the 

atmosphere for these isothermal processes, illustrated in Figures 17 and 18, respectively, 

cannot be found using Equation (13) due to a lack of temperature difference; instead, the 

enthalpy form of the Gibbs equation for a change in entropy of an ideal gas must be used. 

Equation (26) shows the formula applied to the isothermal compression process: 

1 2 21

2 1

1 2 1

ln lnt t
t p air

t

q pT
s s c R

T T p

   
         

   

 (26) 

A derivation of this formula can be found in Fundamental of Thermodynamics, by 

Borgnakke and Sonntag [54]. Solving Equation (26) for 
1 2t
q : 
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2

1 2 1

1

ln

ln

t
t air

hp

atm air

atm

p
q T R

p

p
T R

p

 
    

 

 
   

 
 

 

(27) 

As with the relationship between isothermal specific compression and expansion work 

processes shown by Equation (25), the specific heat transfer for isothermal expansion is 

equal in magnitude and opposite in sign to the specific heat transfer for isothermal 

compression. 

C. EFFECTS OF THERMAL ENERGY STORAGE 

Figure 19 shows the relationships between isentropic and isothermal specific 

work processes based on 𝑝ℎ𝑝: 
1 2
w  requires exponentially more energy than 

1 2t
w , and 

likewise for 
2 1
w  compared to 

2 1t
w . Also shown is the effect that TES has on CAES 

systems: any amount of thermal energy captured during the compression process results 

in the compressor requiring less energy for a given operating pressure and any amount of 

thermal energy transferred to the air during expansion allows the expansion device to 

extract more energy for a given operating pressure. Overall, the system’s operational 

characteristic approaches that of the isothermal process, and cycle efficiency improves. 
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Figure 19.  Component Specific Work Based on Final System Pressure. 

D. POWER ANALYSIS 

The compression phase of this system was also analyzed for both total power and 

specific power, specific power being defined as the power per unit mass flow rate. The 

control-mass assumption for this system required the mass flow rate to be defined as the 

mass of air entering the tank volume per second. Thus 

 ( )m t Q  
(28) 

where 𝑄 is the piston’s volumetric rate of change, which was initially assumed constant. 

1. Isentropic Compression 

Determining isentropic compression power requires a derivative of the work 

formula with respect to time. To apply the derivative, the isentropic compression work 

formula can be written as a function of time as 
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 


 
 1 1

1
( ) ( ) ( )

1s s
W t p t V t p V  (29) 

where 𝑝1 = 𝑝𝑎𝑡𝑚 and 𝑉1 is the initial system volume based on the desired system 

operating pressure. Based on Equation (29), the isentropic power formula is written as 

 
          1

( ) 1 1
( ) ( ) ( ) ( ) ( )

1 1
s

s s atm s

dW t d d
W t p t V t p V p t V t

dt dt dt
 

(30) 

Because both pressure and volume change with time in Equation (30), the Product Rule 

for derivatives must be applied to the pressure-volume product as 

    
( ) ( )

( ) ( ) ( ) ( )s
s s

dp td dV t
p t V t V t p t

dt dt dt
 (31) 

To evaluate Equation (31) the individual components must be determined. System 

volume over time, 𝑉(𝑡), starts at 𝑉1 and, assuming a limitless supply of power, decreases 

linearly over time due to the compressor’s constant volumetric flow rate, 𝑄. Thus, 

1
( )V t V Qt   (32) 

and it follows that 

( )dV t
Q

dt
   (33) 

System pressure as a function of time, 𝑝(𝑡), is determined by rearranging 

Equation (2) as 



 
 



1

1

( )
( ) ( )

atm
s

p Vconstant
p t

V t V Qt
 (34) 

The derivative for Equation (34) can be found using both the Quotient Rule and the 

Chain Rule for derivatives. Thus 
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  



     
 



1

1 1 1

2

1

( ) (0) ( ) ( )( )

( )

atms
V Qt p V V Qt Qdp t

dt V Qt
  

 which, after simplification, becomes 







 
 

 


1

1
1

1

2

1

( )

( )
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s

V
p V Q

V Qtdp t

dt V Qt
 (35) 

Putting Equations (32) through (35) back into Equation (30) results in 
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 
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(36) 

and therefore isentropic compression power is directly proportional to the isentropic 

system pressure. This relationship can be seen by the similar shapes of isentropic power 

and pressure in Figures 20 and 21 in the following section. 

As previously stated, specific power was defined as power per unit mass flow 

rate. Thus, for isentropic compression, Equations (28) and (36) were combined to 

calculate specific power as  
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( ) ( ) ( )
( )

( ) ( )
s s s

s

s s

W t Qp t p t
w t

m t Q t 

 
    (37) 

The density function in Equation (37) can be calculated using the Ideal Gas Law: 

( )
( )

( )
s

s

air s

p t
t

R T t
   (38) 

The temperature function in Equation (38) can be calculated by writing the isentropic 

pressure-temperature relationship in Equation (14) as a function of time: 



  
   
 

1

( ) ( )
atm atm

s s

p T

p t T t
 (39) 

The time-dependent temperature variable in Equation (39) is solved as 
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p
 (40) 

Substituting the right-hand side of Equation (40) for 𝑇𝑠(𝑡) in Equation (38) results in 
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(41) 

Substituting the right-hand side of Equation (41) for 𝜌𝑠(𝑡) in Equation (37) results in 
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2. Isothermal Reference

Isothermal compression power can be determined in the same manner as for the 

isentropic compression process, with the isothermal work formula written as a function of 

time as 
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since 𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for the isothermal work process. Given that Equation (44) contains 

only one variable that changes with time, the power calculation evaluates as 
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and therefore, just as with the isentropic compression process, isothermal compression 

power is directly proportional to the isothermal system pressure. This relationship is also 

shown when comparing Figures 20 and 21. Finally, due to the exponential aspect of the 

isentropic pressure-volume relationship compared to the linear aspect of the isothermal 

pressure-volume relationship, Figure 20 shows that the isentropic compression process 

requires exponentially more power than the isothermal compression process as the 

system pressure rises over time. 

 

Figure 20.  Magnitudes of Isentropic and Isothermal Power, Normalized to 

Charging Time for 10.34 Bar (150 psi). 
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Figure 21.  Magnitudes of Isentropic and Isothermal Pressure, Normalized to 

Charging Time for 10.34 Bar (150 psi). 

In regards to isothermal specific power, Equation (37) is applied to the isothermal 

process as 

( ) ( ) ( )
( )

( ) ( )
th th th

th

th th

W t Qp t p t
w t

m t Q t 

 
    (46) 

Again, the density function is determined using the Ideal Gas Law: 
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Substituting the right-hand side of Equation (47) for 𝜌𝑡ℎ(𝑡) in Equation (46) 

results in 
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(48) 

Equation (48) shows that the power per unit mass flow rate remains constant 

during the isothermal compression process. The relationship between isentropic and 

isothermal specific compression power is illustrated in Figure 22. 

 

Figure 22.  Magnitudes of Isentropic and Isothermal Specific Power, Normalized to 

Charging Time for 10.34 Bar (150 psi). 

3. Compressor Power Limitation 

As mentioned earlier, the previous power consumption calculations assumed a 

limitless power supply. To apply the effect of a capped power supply, the compressor’s 

flowrate, 𝑄, is reduced when the power consumption value reaches the power supply 
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limit (3 kW for this particular SS-CAES). Figures 23 and 24 show pressure rise and 

nominal flowrate percentage respectively over time for both the isentropic and isothermal 

process when the allowed power consumption value is limited to the power supply. This 

figure shows that when system pressure has reached the point where power consumption 

equals power supply, the mathematical relationship of flowrate and pressure in Equations 

(36) and (45) requires that flowrate decrease exponentially to allow pressure to rise while 

keeping power constant. In comparison to the isothermal pressure rise, the isentropic 

pressure rise gets limited earlier due to the exponential rise in pressure—and thus 

power—with respect to time. This limited pressure rise results in the flowrate for the 

isentropic process being reduced to 40% of its original value by the time system pressure 

reaches 10.34 bar (150 psi), whereas the isothermal process retains its original flowrate. 

Overall, the isentropic process would require over twice as much time as the isothermal 

process due to exponential pressure rise. 

 

Figure 23.  Pressure Over Time for a Capped Power Supply. 
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Figure 24.  Nominal Flow Rate Percentage Over Time for a Capped Power Supply. 
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III. SYSTEM CONFIGURATION 

A. DESIGN CONSIDERATIONS 

The initial goal of this project was to augment the IMPREL’s aging, energy 

inefficient air compressor system—comprised of a 450 kW 3-stage centrifugal 

compressor followed by a 112 kW piston-cylinder boost compressor that together 

pressurize supersonic wind tunnel storage tanks—with a system completely powered by 

solar energy. The design criteria in Table 2 were established to accommodate the 

available power supply as well as thermodynamic requirements of the supersonic wind 

tunnel. 

Table 2.   Compression System Design Criteria. 

Parameter Quantity Criterion 

Compressor input power 3 kW,  

single-phase AC 

PV array maximum output 

Compressor discharge 

pressure 

2 MPa (290 psia) Supersonic wind tunnel supply 

pressure 

Air Dryer dew point -40 °C (-40 °F) Prevent wind tunnel damage 

from condensation of humidity 

 

Reaching the desired discharge pressure with the given power supply proved 

unachievable when local compressor companies informed the author that the power 

supply limitation restricted compressor discharge pressure to 1.2 MPa (175 psi). With this 

additional restriction in hand, the project’s goal was updated to install a compressor that 

would augment the centrifugal compressor. The system components are illustrated in 

Figure 25 and their functions are described in the following sections. 
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Figure 25.  One-Line Diagram for Supply Side of Solar-Powered, Small-Scale 

CAES. 

B. SOLAR-POWERED MICRO GRID 

The micro grid that powers the compressed air system consists of a PV array, 

ultracapacitors, a maximum power point tracking (MPPT) controller, and a DC-to-AC 

inverter. Figure 26 shows the electrical flow paths for this micro grid and the following 

paragraphs describe the operation of each component. 
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Figure 26.  One-Line Electrical Diagram of Solar-Powered Micro Grid. 

1. Normal Operations 

Solar radiance is converted to electrical energy by a PV array comprised of 12 

300 W panels, shown in Figure 27. Ten panels of the array provide a nominal 3 kW for 

system loading. A MidNite Solar Classic 150 MPPT charge controller, shown in Figure 

28, optimizes the PV array’s variable DC voltage output. Figure 29 illustrates that by 

continuously maximizing the PV array’s power output, the MPPT circuit also maximizes 

available loading amperage [55]. Following this process, a SMA Sunny Island invertor, 

shown in Figure 28, converts the electrical current from DC to AC and sends power to 

the load. 
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Figure 27.  Fixed-Axis PV Array Outside Integrated Multi-Physics Renewable 

Energy Lab. 

 

Figure 28.  SMA Sunny Island Inverter (Yellow) and MidNite Solar Charge 

Controller (Black). 
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Figure 29.  Maximum Power Point Tracking Graph of Typical Charge Controller. 

Source: [55]. 

2. Startup Power and Excess Storage 

Startup power is supplied by—and excess energy storage is stored in—a bank of 

Maxwell 130F ultracapacitors, an example of which is shown in Figure 30. As indicated 

by Figure 26, portion of the PV array (two panels) charge the ultracapacitor bank until 

voltage builds up to provide startup power to the MidNite Solar charge controller. After 

the charge controller starts, it uses MPPT to fully charge the ultracapacitor bank with the 

remaining 10 PV panels. Following this startup operation, the ultracapacitors store 

surplus energy (Up to 56.6 Wh per capacitor) when the PV array is producing power in 

excess of load requirements. 
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Figure 30.  Maxwell 130F Ultracapacitor. Source: [56]. 

C. COMPRESSION SYSTEM 

1. Rotary Compressor 

Based on runtime require to achieve desired system pressure, a rotary compressor 

was chosen over a reciprocating compressor. A rotary compressor has a smoother 

operation and its compression method, illustrated in Figure 31 as air being compressed by 

a gradually-reduced cavity [57], allows for a more durable construction. The specific 

compressor is a 2-H.P. Powerex Oil-less Scroll air compressor; Figure 32 shows its setup 

integrated with a 60-gal holding tank. 

 

Figure 31.  Principle of Operation for a Powerex Oil-less Scroll Air Compressor. 

Source: [57]. 
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Figure 32.  Powerex Oil-less Scroll Air Compressor. Source: [57]. 

1. Air Dryer 

This system’s air dryer, a regenerative dual-tower shown in Figure 33, removes 

humidity from the air via a regenerative desiccant drying process (described in Figure 

34). This type of air dryer protects the wind tunnel from the destructive effects of 

entrained humidity and avoids any hazardous material concerns encountered in other air 

dryer technologies.  

 

Figure 33.  Zander Ecodry Series Desiccant Dryer. Source: [58]. 
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Figure 34.  Operational Description of a Dual Tower, Heatless, Regenerative 

Desiccant Air Dryer. Source: [59]. 

2. Storage Tanks 

As previously stated at the beginning of this chapter, this system will replace a 

portion of the compression system that is used to charge a supersonic wind tunnel. 

Because supersonic wind tunnels require an immense mass of air for even relatively short 

periods of operations, the tanks being used for this SS-CAES, shown in Figure 35, are 

oversized but were already in place at IMPREL. 
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Figure 35.  Air Storage Tanks. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

The analysis portion of this study showed how fundamental principles of 

thermodynamics could be used to develop a control mass approach for CAES systems. 

This approach resulted in an isentropic CAES system cycle efficiency that is succinctly 

described in terms of the system’s pressure ratio. The comparison of isentropic and 

isothermal cycles showed how TES implementation can directly improve system 

efficiency. Furthermore, the power formulas derived using this approach can easily be 

used to both size the compressor based on power supply limitations and estimate system 

charging time. 

The final design of this compression system, when installed, will use clean energy 

to augment nearly 50% of the current supersonic wind tunnel compression system’s 

energy use, and it will keep the tunnel at a higher state of readiness. 

Recommendations for future study: 

 After system has been verified operational, design control strategy that 

ensures compressor is operating at maximum efficiency with respect to 

solar power input. 

 Integrate compression system with an expansion system recently 

developed by Mclaughlin [52] to demonstrate and collect data on a proof-

of-concept solar-powered SS-CAES system. 

 Design a TES system that harnesses compression heat for use during the 

expansion phase and does so via phase change material. 
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APPENDIX A. EQUATION SUMMARY 

1

1 2

1
1

(1 )

hp

air atm

atm

p
w R T

p





  
   
      

  

 

1

2 3
1

hp

v atm

atm

p
q c T

p

   
    
     

  

 

1

3 4

1
1

(1 )
atm

air atm

hp

p
w R T

p







 
  

       
 

 
 

 

1

4 1
1

hp

p atm

atm

p
q c T

p





 
  

     
  
 

 
 

 

1

3 4

1
1 2

1

1

atm

hp

atm

hp

p

p
w

w
p

p











 
  

   
  
 

  
  
  
     

 

 

 



 50 

1 2
ln atm

t air atm

hp

p
w R T

p
   

 

1 2
ln

hp

t atm air

atm

p
q T R

p

 
   

 
 

  

 

2 1
ln

hp

t air atm

atm

p
w R T

p
   

 

( ) ( )W t Qp t    

 

1

( ) ( )
( )

( )
s s

s air atm

atm

p t p t
w t R T

t p









 
     

 

 

 
 

1

( ) ( )
( )

( )
th th

th air atm

atm

p t p t
w t R T

t p









 
     

 

 

 
 

  



 51 

APPENDIX B. MATLAB CODE 

%% Thomas Prinsen/Thesis/CAES System Cycle & Power Analysis 

  
clc 
clear all 

  
%% Constants 
Tatm = 300;   %Atm temperature [K] 
Patm = 101325;  %Atm pressure [Pa] 
Vtank = 170;   %Tank volume [m^3] 
n = 1.4;    %Polytropic index 
R_air = 287.058;  %Air gas constant [J/kg-K] 
Cv = 718;    %Air const. vol. spec. heat [J/kg-K] 
Q = 0.0028317;   %Supply volumetric flow rate [m^3/s] 
pwrmax = 3;   %Max compressor supply power [KW] 

  
%% Initializing Data Matrices 
P_hp = linspace(101326,1378952)’;  
          %desired system high pressure (14.7-200 psia) 
PR = P_hp/Patm;     %system pressure ratio           
m = zeros(100,1);    %System mass [kg] 
V1 = zeros(100,1);    %Initial volume [m^3] 
P2_isent = zeros(100,1);  %Max system pressure, post-isentropic 

compression 
P2_isoth = zeros(100,1);  %Max system pressure, post-isothermal 

compression 
T2 = zeros(100,1);    %Max system temperature 
V4 = zeros(100,1);    %System volume, post-isentropic expansion 
work_comp_isentropic = zeros(100,1);   
          %specific work of isentropic compression 
work_comp_isothermal = zeros(100,1); 
          %specific work of isothermal compression 
work_turb_isentropic = zeros(100,1); 
          %specific work of isentropic expansion 
work_turb_isothermal = zeros(100,1); 
          %specific work of isothermal expansion 
CycleEff = zeros(100,1);  %Cycle thermal efficiency 
q_23 = zeros(100,1);   %specific heat transfer after isentropic comp 
q_12t = zeros(100,1);   %specific heat transfer during isothermal comp 

  
%% Calculations for Energy, Efficiency 
for i = 1:100 

   
  %**COMPRESSION STAGE** 
  %mass of air needed 
  m(i) = P_hp(i)*Vtank/(R_air*Tatm); 
  %Initial volume needed (at Patm and Tatm) 
  V1(i) = m(i)*R_air*Tatm/Patm; 
  %Pressure the tank will need to be pumped up for isentropic 

compression 
  % to before heat loss (State 2) 
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  P2_isent(i) = Patm*(V1(i)/Vtank)^n; 
  %Pressure the tank will need to be pumped up for isothermal 

compression 
  % to before heat loss (State 2) 
  P2_isoth(i) = Patm*(V1(i)/Vtank);   
  %Max temp of tank before heat loss 
  T2(i) = (P2_isent(i)/P_hp(i))*Tatm; 
  %Isentropic compressor specific work [kJ/kg] 
  work_comp_isentropic(i) = abs((1/(1-n))*... 
   (P2_isent(i)*Vtank - Patm*V1(i)))/(m(i)*1000); 
  %Isothermal compressor specific work (ideal reference) [kJ/kg] 
  work_comp_isothermal(i) = 

abs(Patm*V1(i)*log(Vtank/V1(i)))/(m(i)*1000); 

    
  %**EXPANSION STAGE**  
  %Pressure the tank will expand to before heat gain from atmosphere 
  % (State 4) 
  V4(i) = ((P_hp(i)/Patm)*Vtank^n)^(1/n); 
  %Isentropic turbine specific work [kJ/kg] 
  work_turb_isentropic(i) = (1/(1-n))*... 
   (Patm*V4(i)-P_hp(i)*Vtank)/(m(i)*1000); 
  %Isothermal turbine specific work (ideal reference) [kJ/kg] 
  work_turb_isothermal(i) = 

(P_hp(i)*Vtank*log(V1(i)/Vtank))/(m(i)*1000); 

   
  %**CYCLE EFFICIENCY** ratio of work output to work input 
  CycleEff(i) = (work_turb_isentropic(i)/work_comp_isentropic(i))*100; 

   
end 

  
%Convert pascal to bar for graphing 
Psys_bar  = P_hp/100000;  
P2_isent_bar = P2_isent/100000; 
P2_isoth_bar = P2_isoth/100000; 

  
%Graphing Compressor and Turbine Work, Cycle Efficiency 
figure %isentropic compression vs isothermal compression 
plot(PR,work_comp_isentropic,’r’), hold on 
plot(PR,work_comp_isothermal,’b--’) 
xlim([1.015 13.78]) 
xlabel ‘Pressure Ratio’  
ylabel ‘Compression Specific Work [kJ/kg]’; 
legend(‘Isentropic’,’Isothermal’,’Location’,’NW’) 
annotation(‘textbox’,... 
  [0.43035714285714 0.338095238095242 0.278571428571429 

0.0619047619047649],... 
  ‘String’,’Isothermal Compression’,... 
  ‘FitBoxToText’,’off’,... 
  ‘EdgeColor’,[1 1 1]); 
annotation(‘textbox’,... 
  [0.576785714285714 0.626190476190476 0.278571428571429 

0.0619047619047649],... 
  ‘String’,’Isentropic Compression’,... 
  ‘FitBoxToText’,’off’,... 
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  ‘EdgeColor’,[1 1 1]); 

  
figure %isentropic pressure vs isothermal pressure 
plot(PR,P2_isent_bar,’r’), hold on 
plot(PR,P2_isoth_bar,’b--’) 
xlim([1.015 13.78]) 
xlabel ‘Pressure Ratio’  
ylabel ‘p_2 [bars]’ 
legend(‘Isentropic’,’Isothermal’,’Location’,’NW’) 

  
figure %isentropic compression vs isentropic expansion 
plot(PR, work_comp_isentropic,’r’), hold on 
plot(PR, work_turb_isentropic,’r--’) 
xlim([1.015 13.78]) 
xlabel ‘Pressure Ratio’, ylabel ‘Component Specific Work [kJ/kg]’ 
annotation(‘textbox’,... 
  [0.579571428571428 0.647619047619049 0.313285714285714 

0.0642857142857154],... 
  ‘String’,{‘Isentropic Compression’},... 
  ‘LineStyle’,’none’,’FitBoxToText’,’off’); 
annotation(‘textbox’,... 
  [0.579571428571428 0.219047619047619 0.295428571428572 

0.0785714285714291],... 
  ‘String’,{‘Isentropic Expansion’},... 
  ‘LineStyle’,’none’,’FitBoxToText’,’off’); 
legend(‘|_1w_2|’,’_3w_4’,’Location’,’NW’) 

  
figure %isentropic vs isothermal processes 
plot(PR, work_comp_isentropic,’r’), hold on 
plot(PR, work_turb_isentropic,’r--’) 
plot(PR, work_comp_isothermal,’b-.’) 

  
xlim([1.015 13.78]) 
xlabel ‘Pressure Ratio’ 
ylabel ‘Component Specific Work [kJ/kg]’ 

  
annotation(‘textbox’,[0.52 0.58 0.32 0.06],’String’,... 
  {‘Isentropic Compression’},... 
  ‘FitBoxToText’,’off’,’EdgeColor’,[1 1 1]); 
annotation(‘textbox’,[0.54 0.24 0.32 0.06],... 
  ‘String’,{‘Isentropic Expansion’},... 
  ‘LineStyle’,’none’,’FitBoxToText’,’off’); 
annotation(‘textbox’,[0.46 0.40 0.41 0.057],... 
  ‘String’,{‘Isothermal Compression/Expansion’},... 
  ‘LineStyle’,’none’,’FitBoxToText’,’off’); 
annotation(‘arrow’,[0.50 0.50],[0.61 0.51]); 
annotation(‘textbox’,[0.43 0.51 0.06 0.05],... 
  ‘String’,’TES’,... 
  ‘LineStyle’,’none’,’FitBoxToText’,’off’); 
annotation(‘arrow’,[0.45 0.45],[0.31 0.41]); 
annotation(‘textbox’,[0.38 0.31 0.06 0.048],... 
  ‘String’,’TES’,... 
  ‘LineStyle’,’none’,’FitBoxToText’,’off’); 
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legend(‘|_1w_2|’,’_3w_4’,’|_1w_{2t}|=_{2t}w_1’,... 
  ‘Location’,’NW’) 

  
figure %Cycle efficiency 
plot(PR, CycleEff) 
xlim([1 13]) 
ylim([0 100]) 
xlabel ‘Pressure Ratio’, ylabel ‘Cycle Efficiency [%]’ 

  
%% Calculations for Power Consumption with constant flowrate 

  
% Calculating compressor power consumption to compress tanks to 150 

psia 
% Mass of air needed at 1034210 Pa (150 psia) 
m0 = 1034210*Vtank/(R_air*Tatm); 
%Initial volume needed (at Patm and Tatm) 
V0 = m0*R_air*Tatm/Patm; 
% Seconds of compressor operation to get from initial to final volume 
% assuming constant flowrate 
sec = floor((V0 - Vtank)/Q);  
time_sec = linspace(0,sec,sec);   %Array for time steps of 1 second  
time_hour = time_sec/3600;     %Converted to hours for graphing  
t_over_tfinal = time_hour/(sec/3600); %Non-dimensionalized 
%Establish arrays for pressure and volume values  
P_150 = zeros(sec,1); %Array for incremental pressures building up to  
        % Psys = 150 psia for isentropic power 
P_150_isoth = zeros(sec,1); %Array for incremental pressures building 

up to 
          % Psys = 150 psia for isothermal power 
V_150 = zeros(sec,1); %Array for incremental volumes 
%Establish arrays for power and specific power values 
Pwr = zeros(sec,1); 
specpower = zeros(sec,1); 
Pwr_isotherm = zeros(sec,1); 
specpower_isotherm = zeros(sec,1); 

  
%Power = P*dV/dt + dP/dt*V 
for i = 1:(sec)  
  V_150(i) = V0 - Q*i; 
  P_150(i) = Patm*((V0/(V0 - Q*i))^n); 
  P_150_isoth(i) = Patm*(V0/(V0 - Q*i)); 
  PxdV_dt = P_150(i)*-1*Q; 
  VxdP_dt = (V0-Q*i)*((Patm*Q*V0*n*(V0/(V0-Q*i))^(n-1))/(V0-Q*i)^2); 
  mdot = ((P_150(i))^(1/n)*(Patm^((n-1)/n))/(R_air*Tatm))*Q; 
  mdot_isotherm = (P_150_isoth(i)/(R_air*Tatm))*Q; 
  %Isentropic power calculation 
  Pwr(i) = abs((1/(1-n))*(PxdV_dt + VxdP_dt))/1000; %[KW] 
  specpower(i) = Pwr(i)/mdot; 
  %Isothermal power based on W=P0V0ln(V/V0) 
  Pwr_isotherm(i) = abs((Patm*Q*V0)/(V0 - Q*i))/1000; 
  specpower_isotherm(i) = Pwr_isotherm(i)/mdot_isotherm; 

   
end 
%Convert pressure to bars for graphing 
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P_150_bar   = P_150/100000; 
P_150_isoth_bar = P_150_isoth/100000; 

  
figure %isentropic vs isothermal power 
plot(t_over_tfinal,Pwr,’r’), hold on 
plot(t_over_tfinal,Pwr_isotherm,’b--’) 
xlabel ‘t/t_f’ 
ax = gca; 
ax.XTick = [0 1]; 
ylabel ‘Compression Power [KW]’; 
legend(‘Isentropic Power’, ‘Isothermal Power’, ‘Location’,’NW’) 

  
figure %isentropic vs isothermal power 
plot(t_over_tfinal,P_150_bar,’r’), hold on 
plot(t_over_tfinal,P_150_isoth_bar,’b--’) 
xlabel ‘t/t_f’ 
ax = gca; 
ax.XTick = [0 1]; 
ylabel ‘p_2 [bar]’; 
legend(‘Isentropic Pressure’, ‘Isothermal Pressure’, ‘Location’,’NW’) 

  
figure %isentropic vs isothermal specific power 
plot(t_over_tfinal,specpower,’r’), hold on 
plot(t_over_tfinal,specpower_isotherm,’b--’) 
xlabel ‘t/t_f’ 
ax = gca; 
ax.XTick = [0 1]; 
ylabel ‘Specific Compression Power [KW/kg/s]’; 
ylim([0 240]); 
ax.YTick = [0 80 160 240]; 
legend(‘Isentropic Specific Power’, ‘Isothermal Specific Power’, 

‘Location’,’NW’) 

  
%% Calculations for Power Consumption with capped power supply 
% Establishing array of flowrate values. These values will be divided 
% by the actual flowrate to obtain a percentage of nominal flowrate 
% when compressor power reaches the power supply limit 
Qarray_isent = Q*ones(20000000,1);  
Qarray_isoth = Q*ones(20000000,1); 
%Re-establishing incremental pressure values 
P_150_capped = zeros(1400000,1); 
P_150_isoth_capped = zeros(1400000,1); 

  
% loop for isentropic capped power 
time = 0;    %initialize time 
i = 0;     %initialize counter for indexing arrays 
while (V0 - Q*i) > Vtank 
  i = i + 1;  %increase counter for each loop iteration 

   
  %Isentropic power calculation [KW] 
  P_150_capped(i) = Patm*((V0/(V0 - Q*i))^n); 
  PxdV_dt = P_150_capped(i)*-1*Q; 
  VxdP_dt = (V0-Q*i)*((Patm*Q*V0*n*(V0/(V0-Q*i))^(n-1))/(V0-Q*i)^2); 
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  Pwr(i) = abs((1/(1-n))*(PxdV_dt + VxdP_dt))/1000; 

   
  %loop to recalculate power by lowering Q when power is greater than 
  %compressor power supply 
  while Pwr(i) > pwrmax 
   %reducing flowrate 
   Q = Q - 0.000000001; 
   %calcuate reduced pressure rise 
   P_150_capped(i) = Patm*((V0/(V0 - Q*i))^n); 
   %calculate power to determine if below max power 
   PxdV_dt = P_150_capped(i)*-1*Q; 
   VxdP_dt = (V0 - Q*i)*((Patm*Q*V0*n*(V0/(V0 - Q*i))^(n - 1))/(V0 - 

Q*i)^2);   
   Pwr(i) = abs((1/(1-n))*(PxdV_dt + VxdP_dt))/1000; 
  end 

   
  %determine flowrate percentage 
  Qarray_isent(i) = (Q/Qarray_isent(i))*100; 
  %increase time counter each iteration 
  time = time + 1; 
end 

  
%convert time to hours array for graphing 
time = linspace(0,time,time)/3600; 
%non-dimensionalize time with respect to constant flow rate compression 
% time 
time_over_tfinal = time/(sec/3600); 

  
% loop for isothermal power capped 
Q = 0.0028317; %Reset flowrate to nominal value 
time1 = 0; %Iniitialize time for isothermal loop 
i = 0;  %initialize counter for indexing arrays 
while (V0 - Q*i) > Vtank 
  i = i + 1;  %increase counter for each loop iteration 

   
  %Isothermal pressure increase 
  P_150_isoth_capped(i) = Patm*(V0/(V0 - Q*i)); 
  %Isothermal power based on W=P0*V0*ln(V/V0) 
  Pwr_isotherm(i) = abs((Patm*Q*V0)/(V0 - Q*i))/1000; 

   
  %loop to recalculate power by lowering Q when power is greater than 
  %compressor power supply 
  while Pwr_isotherm(i) > pwrmax 
   %reducing flowrate 
   Q = Q - 0.000000001; 
   %calcuate reduced pressure rise 
   P_150_isoth_capped(i) = Patm*(V0/(V0 - Q*i)); 
   %calculate power to determine if below max power 
   Pwr_isotherm(i) = abs((Patm*Q*V0)/(V0 - Q*i))/1000; 
  end 
  %determine flowrate percentage 
  Qarray_isoth(i) = (Q/Qarray_isoth(i))*100; 
  %increase time counter each iteration 
  time1 = time1 + 1; 
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end 

  
%convert time to hours array for graphing 
time1 = linspace(1,time1,time1)/3600; 
%non-dimensionalize time with respect to constant flow rate compression 
% time 
time1_over_tfinal = time1/(sec/3600); 
%convert pressure to bars for graphing 
P_150_capped = P_150_capped/100000; 
P_150_isoth_capped = P_150_isoth_capped/100000; 

  
% Graphing pressure and flow rate under capped power supply conditions 
% normalized to constant flow rate compression time 

  
figure %isentropic and isothermal pressure 
plot(time_over_tfinal,P_150_capped(1:length(time)),’r-’), hold on 
plot(time1_over_tfinal,P_150_isoth_capped(1:length(time1)),’b--’) 
xlabel ‘t/t_f’ , ylabel ‘p_2 [bar]’ 
legend(‘Isentropic Pressure’,’Isothermal Pressure’,’Location’,’SE’) 

  
figure %isentropic and isothermal flow rates 
plot(time_over_tfinal,Qarray_isent(1:length(time)),’r-’), hold on 
plot(time1_over_tfinal,Qarray_isoth(1:length(time1)),’b--’) 
xlabel ‘t/t_f’ , ylabel ‘% Nominal Flow Rate’ 
legend(‘Isentropic Flow Rate’,’Isothermal Flow Rate’) 

  
% Graphing pressure and flow rate under capped power supply conditions 
% for estimating time to compress NPS system 

  
figure %isentropic and isothermal pressure 
plot(time,P_150_capped(1:length(time)),’r-’), hold on 
plot(time1,P_150_isoth_capped(1:length(time1)),’b--’) 
xlabel ‘time [hr]’ , ylabel ‘p_2 [bar]’ 
legend(‘Isentropic Pressure’,’Isothermal Pressure’,’Location’,’SE’) 

  
figure %isentropic and isothermal flow rates 
plot(time,Qarray_isent(1:length(time)),’r-’), hold on 
plot(time1,Qarray_isoth(1:length(time1)),’b--’) 
ylim([0 100]); 
xlabel ‘time [hr]’ , ylabel ‘% Nominal Flow Rate’ 
legend(‘Isentropic Flow Rate’,’Isothermal Flow Rate’) 
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